Chapter 4 :-
ering

De?'w\ Engine

Prepared By :-
Jigar Dave

R K University
8469766496

Introduction to design process

 The main aim of design engineering is to gener odel which
shows determination, pleasure and product.

w Software design is an iterative process through equirements are

translated int('ueprint for building the software.

Software quality guidelines

k& A design is generated using the recognizable architectural styles and
compose a good design characteristic of components and it is
implemented in evolutionary manner for testing.

k2 A design of the software must be modular. I. ware must be
logically partitioned into elements.

w In design, the sentation of data, architecture, interface and
components e separate.

& A design mus appropriate data structure and identifiable data
patterns.

k& Design components must show the independent functional
characteristic.

k2 A design creates an interface that reduce.the complexity of
connections between the components.

2 The notations should be use in design which can effectively
communicates its meaning.

Quality attributes

k& The attributes of design name as 'FRUPS' are as follows:

1) Functionality:

2) Reliability:

3) Usability:
4) Performanc

5) Supportability

& 1) Functionality:
It evaluates the feature set and capabilities of the program.

2) Usability:
It is accessed by considering the factors such as actor,consistency
and documentation.

3) Reliability:
It is evaluated suring parameters like frequency and security of

failure, output accuracy, the mean-time-to-failure(MTTF), recovery
from failure and the program predictability.

4) Performance:
It is measured by considering processing speed, response time,
throughput and efficiency.

& 5) Supportability :

It combines the ability to extend the program, adaptability, serviceability.
These three term defines the maintainability.

Testability, compatibility and configurability are t using which a
system can be easily installed and found the probl

Supportability a ists of more attributes such as compatibility,

extensibility, fau nce, modularity, reusability, robustness, security,
portability, scalability.

Design concepts

v 1. Abstraction

@ A collection of data that describes a data object is a data
abstraction.

@ A solution is stated in large terms usin uage of the
problem environment at the highest leve raction.

z The low of abstraction provides a more detail
descripti e solution.

@ A sequence of instruction that contain a specific and limited
function refers in a procedural abstraction.

o 2. Architecture

& The complete structure of the software is known as software
architecture.

& Structure provides conceptual integrity for a sy in a number of
ways.

& The architecture is the structure of program m here they
interact with e her in a specialized way.

& The compone the structure of data.

& The aim of the's are design is to obtain an architectural framework
of a system.

& The more detailed design activities are conducted from the
framework.

& 3. Patterns
A design pattern describes a design structure and that structure solves
a particular design problem in a specified content.

4. Modularity

& A software is separately divided into name and addressable
components. Sometime they are called as mo ich integrate to
satisty the problem requirements.

& Modularity is ingle attribute of a software that permits a program
to be manage

& 5. Informati ding
Modules must be specified and designed so that the information like
algorithm and data presented in a module is not accessible for other
modules not requiring that infosmation.

& 6. Functional independence

& The functional independence is the concept of separation and related
to the concept of modularity, abstraction and information hiding.

& The functional independence is accessed using two criteria i.e
Cohesion and coupling.

v Cohesion

Cohesion is a sion of the information hiding concept.

A cohesive m erforms a single task and it requires a small
interaction with the'other components in other parts of the program.

& Coupling
Coupling is an indication of interconnection between modules in a
structure of software.

& 7. Refinement
& Refinement is a top-down design approach.

& It is a process of elaboration.

& A program is established for refining levels © ral details.
& Functions refi nt.

8.Refactoring

It is a reorganization technique which simplifies the design of
components without changing its function behavior.

Refactoring is the process of changing the software system in a way
that it does not change the external behavior of e still improves
its internal structure.

9. Design classes

The model of software is defined as a set of design classes.

Every class describes the elements of problem domain and that
focus on features of the problem which are user visible.

Open- closed Principle

w “Software entities (classes, modules, functions, etc.) should be
open for extension, but closed for modification.”

& The Open Close Principle states that the design
the code should be done in a way that new fune
be added with minimum changes in the existin
should be done in a way to allow the adding of
as new classes ping as much as possible existi

unchanged.

Whenla new shape 15 added this
should be changedi{and thisis badtt)

GraphicE ditor .
- I (5. m_type == 1)
drawiectangls();

oo cle v oid else if (s.m_type == J)
+drawh ectangle (v aid drawlrcle();
+lrawShape) v oid

Rectangle

Structured Design
Function Oriented Design

& In function-oriented design, the system is comprised of many
smaller sub-systems known as functions. T unctions are
capable of performing significant task in th . The
system is considered as top view of all fune

w Function oriented design inherits some prop of structured
design w ide and conquer methodology is used.

w Design P

& The whole system is seen as how data flows in the system by
means of data flow diagram.

. DFD depicts how functions changes data and state of entire
system.

& The entire system is logically brokefwdownrinto smaller units
known as functions on the basis of their operation in the
system.

& Each function is then described at large.

Object Oriented Design

& Object oriented design works around the entities and their
characteristics instead of functions involved in the software
system. This design strategies focuses on en its
characteristics. The whole concept of softw on revolves
around the engaged entities.

2 Objects - ities involved in the solution design are known

as objects mple, person, banks, company and customers
are treate ects. Every entity has some attributes
associated to it and has some methods to perform on the
attributes.

w Classes - A class is a generalized description of an object. An
object is an instance of a clags.’&lass defines all the attributes,
which an object can have and methods; which defines the
functionality of the object.

& In the solution design, attributes are stored as variables and
functionalities are defined by means of methods or procedures.

k& Encapsulation - In OOD, the attributes (data variables) and methods
(operation on the data) are bundled together is called encapsulation.
Encapsulation not only bundles important information of an object
together, but also restricts access of the data and methods from the
outside world. This is called information hiding:

& Inheritance - OOD allows similar classes to stac jerarchical
manner where t wer or sub-classes can impo ement and re-use
allowed varia methods from their immediate super classes. This

property of O own as inheritance. This makes it easier to define
specific class an create generalized classes from specific ones.

& Polymorphism - OOD languages provide a mechanism where methods
performing similar tasks but vary in arguments, can be assigned same
name. This is called polymorphismywhich allows a single interface
performing tasks for different types. Depending upon how the function
is invoked, respective portion of the code gets executed.

w Design Process :-

& Though it varies according to design approach (function oriented or
object oriented, yet It may have the following steps involved:

& A solution design is created from requirement or previous used
system and/or system sequence diagram.

& Objects are identified and grouped into classe If of similarity
in attribute characteristics.

2 Class hierar relation among them is defined.
. Application O1K is defined.

Software Design Complexity

k& Software design complexity is difficult to assess wi t using
complexity metrics and measures.

w Halstead's Complexity Measures :

v In 1977, Mr. M oward Halstead introduced metrics to measure
software com alstead’s metrics depends upon the actual
implementatio ogram and its actions, which are computed directly
from the operators and operands from source code, in static manner. It
allows to evaluate testing time, vocabulary, size, ditficulty, errors, and
efforts for C/C++/Java source code.

k& He defines various indicators to check complexity of module.

Parameter Meaning

nl Number of unigue operators

n2 Number of unigue operands

N1 MNumber of total occurrence of operators

N2 MNumber of total occurrence of operands

When we select source file to view its complexity details in Metric Viewer, the

following result is seen in Metric Report:

Metric Meaning Mathematical Representation
n Vocabulary nl + n2
Size N1 + N2
Volume Length * Log2 Vocabulary
Difficulty (N1/2) * (N1/n2)
Efforts Difficulty * Volume
Errars Violume / 3000

Testing time Time = Efforts / S, where 5=18 seconds.

main()

{
int a, b, c, avg;
scanf("&d &d %d", &a, &b, &c);
avg = (a+ b+ c) / 3;
printf("avg = %d", avg);

h

The unique operators are: main, (), {}. int, scanf, & =, +, /, printf,",", ;
The unigue operands are: a, b, ¢, avg, "%d %d %d", 3, "avg = %d"
e =12 m=Tn=19
o N1 =27 Ny =15 N =42
« Calculated Estimated Program Length: N=12x logy12 + 7 x logy T = 62.67

o Volume: V' =42 x logy 19 = 1784

« Difficulty: L} = % ¥ % = 12.85

o Effort: B = 12.85 x 178.4 = 2292.44

2292.44
« Time required to program: T = 18 = 127.357 seconds
2
2292.44%
« Number of delivered bugs: B = ——— = 0.05

3000

Cyclomatic Complexity Measures (C&C)

k& Every program encompasses statements to exe in order to
perform some task and other decision-makin ts that
decide, what statements need to be executed. cision-making

constructs ch he flow of the program.
v If we compa rograms of same size, the one with more

decision-ma atements will be more complex as the control of
program jumps frequently.

& McCabe, in 1976, proposed Cyclomatic Complexity Measure to
quantify complexity of a given software. It is graph driven model
that is based on decision-making constructs of program such as if-
else, do-while, repeat-until, switch-case and goto statements.

2 Process to make flow control graph :-

& Break program in smaller blocks, delimited by d
constructs.

 Create nodes representing each of these nodes.
w Connect node WS:

@ If control ca from block i to block j

@ Draw an arc

z From exit node to entry node
@ Draw an arc.

& To calculate Cyclomatic complexity of a program module, we use the
formula :-

kV(G)=e-n+2
& Where
k& e is total number of edges n is total number of

2 N is total number of nodes.

e =10
n=_y
& Cyclomatic Complexity =10-8+2=4

& According to P. Jorgensen, Cyclomatic Complexity of a module should
not exceed 10

Code

atatementl

If expressionl
atatements
elae
BTALEMENT]

atatemants
da
atatements

while eXpresglond

atatementh

Flow-Chart Flow-Graph

atatement]
i el

r expressionl —l .;,
[5
ptatement’? gtatemant3
e

| |
'

atatementd e o

4
— atatamanth

4

— _ @Xpresslond

|

statementé

Role of Software Architecture

& The architecture of a system describes its major components, their
relationships (structures), and how they interact with each other.

v Architecture serves as a blueprint for a syste

v It provides an abstraction to manage the syste xity and
establish a co ication and coordination me sm among
components.

w It definesa’s ed solution to meet all the technical and
operational requirements, while optimizing the common quality
attributes like performance and security.

& Further, it involves a set of significant decisions about the
organization related to softwaré dévelopment and each of these
decisions can have a considerable impact on quality,
maintainability, performance, and the overall success of the final
product. These decisions comprise of —

& Selection of structural elements and their interfaces by which the system
is composed.

& Behavior as specified in collaborations among t ents.

& Composition of these structural and behavioral'e s into large
subsystem.

& Architectural S align with business objectives.

& Architectural styles'guide the organization.

 GOAL S FOR SOFTWARE ARCHITECTURE :-
& Expose the structure of the system, but hide itsi ntation details.

& Realize all the use-cases and scenarios.
& Try to address t quirements of various stakeh
v Handle both £ I and quality requirements.

& Reduce the go nership and improve the organization’s market
position.

& Improve quality and functionality offered by the system.

k& Improve external confidence in either the organization or system.

The role of a software architect

w interact ’ients
e review the e

v collaborative working (Client & Developer)

C&C View

