
Prepared By  
Prof.Jigar Dave 

SOE 
R K University 
8469766496 



 The process to gather the software 
requirements from client, analyze, and 
document them is known as requirement 
engineering.  

 The process of collecting the software 
requirement from the client then understand, 
evaluate and document it is called as 
requirement engineering. 

 Requirement engineering makes a bridge for 
design and construction 

 



 Requirement engineering consists of seven 
different tasks as follow: 

 1. Inception 

 2. Elicitation 

 3. Elaboration 

 4. Negotiation 

 5. Specification 

 6. Validation 

 7. Requirement management 



 Inception is a task where the requirement 
engineering asks a set of questions to 
establish a software process. 

 In this task, it understands the problem and 
evaluates with the proper solution. 

 It collaborates with the relationship between 
the customer and the developer. 

 The developer and customer decide the 
overall scope and the nature of the Project. 

 



 Elicitation means to find the requirements from 
anybody. 

 The requirements are difficult because the following 
problems occur in elicitation. 

 

 Problem of scope: The customer give the unnecessary 
technical detail rather than clarity of the overall 
system objective. 

 Problem of understanding: Poor understanding 
between the customer and the developer regarding 
various aspect of the project like capability, limitation 
of the computing environment. 

 Problem of fix req: In this problem, the requirements  
change from time to time and it is  difficult while    
  developing the project. 



 Elaboration means “to work out in detail”. 

 In this task, the information taken from user 
during inception and elaboration and are 
expanded and refined in elaboration. 

 Its main task is developing pure model of 
software using functions, feature and 
constraints of a software. 

  Thus , elaboration is an “analysis modeling 
action”. This model focuses on how the end 
user will „interact with the system‟ 



 In negotiation task, a software engineer 
decides the how will the  project be achieved 
with limited business resources. 

 To create rough guesses of development and 
access the impact of the requirement on the 
project cost and delivery time. 

 



 In this task, the requirement engineer builds 
a final work product. 

 The work product is in the form of software 
requirement specification(SRS). 

 In this task, formalize the requirement of the 
proposed software such as informative, 
functional and behavioral. 

 The requirement are formalize in both 
graphical and textual formats. 

 



 The work product is built as an output of the 
requirement engineering and that is accessed 
for the quality through a validation step. 

 The formal technical reviews from the 
software engineer, customer and other 
investors helps for the primary requirements 
validation mechanism. 

 In this task developer ,customer will validate 
Product is accurate or not.(in short testing) 



 It is a set of activities that help the project team to 
identify, control and track the requirements and 
changes can be made to the requirements at any time 
of the ongoing project. 

 These tasks start with the identification and assign a 
unique identifier to each of the requirement. 

 After finalizing the requirement trackable table is 
developed. 

 The examples of traceability table are the features, 
sources, dependencies, subsystems and interface of 
the requirement. 

 activities that help project team to identify, control, 
and track requirements and changes as project 
proceeds, similar to  software configuration 
management (SCM) techniques 
 



 Eliciting requirement helps the user for 
collecting the requirement. 

 Eliciting requirement steps are as follows: 

 1. Collaborative requirements gathering. 

 2. Quality Function Deployment (QFD). 

 3. Usage scenarios. 

 4. Elicitation work product. 



 Gathering the requirements by conducting 
the meetings between developer and 
customer. 

 Fix the rules for preparation and 
participation. 

 The main motive is to identify the problem, 
give the solutions  for the elements, 
negotiate the different approaches  and 
specify the primary set of solution 
requirements in an environment which is 
valuable for achieving goal. 
 



 In this technique, translate the customer need 
into the technical requirement for the 
software. 

 QFD system designs a software according to 
the demands of the customer. 

 QFD consist of three types of requirement: 

 1. Normal requirements 

 2. Expected requirement 

 3. Exciting  requirements 



 Normal requirements - The objective and goal are 
stated for the system through the meetings with the 
customer. 

 For the customer satisfaction these requirements 
should be there. 

 Expected requirement - 
 These are the basic requirement that not be clearly 

told by the customer, but also the customer expect 
that requirement. 

 Exciting  requirements - These features are beyond 
the expectation of the customer. 

 The developer adds some additional features or 
unexpected feature into the software to make the 
customer more satisfied. 
For example, the mobile phone with standard 
features, but the developer adds few additional 
functionalities like voice searching, multi-touch 
screen etc. then the customer more exited about that 
feature. 
 



 Till the software team does not understand 
how the features and function are used by the 
end . 

 To achieve above problem the software team 
produces a set of structure that identify the 
usage for the software. 

 This structure is called as 'Use Cases'. 

 



 The work product created as a result of 
requirement elicitation that is depending on 
the size of the system or product to be  built. 

 The work product consists of a statement 
need, feasibility, statement scope for the 
system. 

 It also consists of a list of users participate in 
the requirement elicitation. 

 



 Requirements analysis  
◦ specifies software‟s operational  characteristics 
◦ indicates software's interface  with other system 

elements  
◦ establishes constraints  that software must meet 

 Requirements analysis allows the software 
engineer (called an analyst or modeler in this 
role) to: 
◦ elaborate  on basic requirements established during 

earlier requirement engineering tasks 
◦ build models  that show user scenarios, functional 

activities, problem classes and their relationships, 
system and class behavior, and the flow of data as it is 
transformed.  

 



18 

system 

description

analysis 

model

design 

model

Writing the Software Specification 

Everyone knew exactly 
what had to be done 
until someone wrote it 
down! 



 Broadly software requirements should be 
categorized in these categories:  

 1. Functional Requirements  

 2. Non-Functional Requirements . 

 3. User Interface requirements . 

 



 Requirements, which are related to functional 
aspect of software fall into this category.  

 They define functions and functionality within 
and from the software system.  

 EXAMPLES -  
◦  Search option given to user to search from various 

invoices.  
◦ User should be able to mail any report to management.  
◦ Users can be divided into groups and groups can be 

given separate rights.  
◦ Should comply business rules and administrative 

functions.  
◦ Software is developed keeping downward compatibility 

intact.  

 



 Requirements, which are not related to 
functional aspect of software, fall into this 
category.  

 Non-functional requirements include –  
 

 Security  

  Logging  

 Storage  

 Configuration  

 Performance  

 Cost  

 Interoperability  

 Flexibility  

 Disaster recovery  

 Accessibility  

 



 Requirements are categorized logically as:  

 Must Have : Software cannot be said operational 
without them. (Core Features) 

 Should have : Enhancing the functionality of 
software. (For better system) 

 Could have : Software can still properly function 
with these requirements.  

 Wish list : These requirements do not map to 
any objectives of software.  

 While developing software, „Must have‟ must be 
implemented, „Should have‟ is a matter of 
debate with stakeholders, whereas „Could have‟ 
and „Wish list‟ can be kept for software updates  



 User Interface (UI) is an important part of any 
software or hardware  . A software is widely 
accepted if it is –  

  easy to operate  

  quick in response  

  effectively handling operational errors  

  providing simple yet consistent user interface  

 



 User interface requirements are briefly mentioned below –  
 

  Content presentation  
  Easy Navigation  
  Simple interface  
  Responsive  
  Consistent UI elements  
  Feedback mechanism  
  Default settings  
  Purposeful layout  
  Strategically use of color and texture.  
  Provide help information  
  User centric approach  
  Group based view settings.  

 



 It is a four step process, which includes –  

 
  Feasibility Study  

  Requirement Gathering  

  Software Requirement Specification(SRS)  

  Software Requirement Validation (SRV) 

 



 When the client approaches the organization for 
getting the desired product developed, it comes 
up with a rough idea about what all functions the 
software must perform and which all features are 
expected from the software.  

 Referencing to this information, the analysts do a 
detailed study about whether the desired system 
and its functionality are feasible to develop.  

 This feasibility study is focused towards goal of 
the organization.  

 



 This study analyzes whether the software 
product can be practically Devloped in terms 
of implementation, contribution of project to 
organization, cost constraints, and as per 
values and objectives of the organization.  

 The output of this phase should be a 
feasibility study report  that should contain 
acceptable comments and recommendations 
for management after the project should be 
started.  



 If the feasibility report is positive towards 
starting the project, next phase starts with 
gathering requirements from the user. 
Analysts and engineers communicate with the 
client and end-users to know their ideas on 
what the software should provide and which 
features they  want the software to include  



 SRS is a document created by system analyst 
after the requirements are collected from various 
investors.  

 SRS defines how the intended software will 
interact with hardware, external devices, speed of 
operation, response time of system, portability of 
software across various platforms, 
maintainability, Security, Quality, Limitations etc.  

 The requirements received from client are written 
in natural language. It is the responsibility of the 
system analyst to document the requirements in 
technical language so that they can be 
understood and used by the software 
development team.  



 SRS should come up with the following features: 

  
◦ User Requirements are expressed in natural language.  

◦ Technical requirements are expressed in structured 
language, which is used inside the organization.  

◦ Design description should be written in Pseudo code. 
(Pseudocode is an artificial and informal language that 
helps programmers develop algorithms. Pseudocode is 
a "text-based" detail (algorithmic) design tool. )         
ex :- 

 If student's grade is greater than or equal to 60 

 Print "passed" 

else 

 Print "failed" 

◦ Format of Forms and GUI screen prints.  

◦ Conditional and mathematical notations for DFDs etc.  

 



  A basic purpose of the SRS is to bridge this 
communication gap so they have a shared 
vision of the software being built.  Hence, 
one of the main advantages of a good SRS is: 
◦ An SRS establishes the basis for agreement 

between the client and the supplier on what the 
software product will do. 

◦ An SRS provides a reference for validation of the 
final product. 

◦ A high-quality SRS is a prerequisite to high-quality 
software. 

◦ A high-quality SRS reduces the development cost. 

 

 



 The important properties of a good SRS 
document are the following:  

 Short. The SRS document should be short and at 
the same time clear, reliable, and complete. 
Talkative  

 Structured. It should be well-structured. A well-
structured document is easy to understand and 
modify. In practice, the SRS document 
undergoes several revisions to manage with the 
customer requirements. Often, the customer 
requirements evolve over a period of time. 
Therefore, in order to make the modifications to 
the SRS document easy, it is important to make 
the document well-structured.  
 
 



 Black-box view. It should only specify what the 
system should do .This means that the SRS 
document should specify the external behavior of 
the system and not discuss the implementation 
issues. The SRS document should view the 
system to be developed as black box, and should 
specify the externally visible behavior of the 
system. For this reason, the SRS document is also 
called the black-box specification of a system.  

 Conceptual integrity. It should show conceptual 
integrity so that the reader can easily understand 
it.  

 Response to undesired events. It should 
characterize acceptable responses to undesired 
events. These are called system response to 
exceptional conditions.  

 

 



 Verifiable. All requirements of the system as 
documented in the SRS document should be 
verifiable. This means that it should be 
possible to determine whether or not 
requirements have been met in an 
implementation.  

 



 
 

 Without developing the SRS document, the system would 
not be implemented according to customer needs.  
 
 

 Software developers would not know whether what they 
are developing is what exactly required by the customer.  
 

 Without SRS document, it will be very much difficult for 
the maintenance engineers to understand the 
functionality of the system.  
 

 It will be very much difficult for user document writers to 
write the users‟ manuals properly without understanding 
the SRS document.  
 



 

  It would be very much difficult to understand 
that document.  

  It would be very much difficult to modify that 
document.  

 Conceptual integrity in that document would 
not be shown.  

 The SRS document might be unambiguous 
and inconsistent.  



 Correct 

 Clear-cut 

 Complete 

 Consistent 

 Ranked for importance and/or stability 

 Verifiable 

 Modifiable 

 Traceable 

 



 Completeness of specifications is difficult to 
achieve and even more difficult to verify. 
Having guidelines about what different 
things an SRS should specify will help in 
completely specifying the requirements. Here 
we describe some of the system properties 
than an SRS should specify. 

 The basic issues an SRS must address 
◦ 1. Functionality 
◦ 2. Performance 
◦ 3.  Design constraints imposed on an 

implementation 
◦ 4. External interfaces 

 



 After requirement specifications are developed, 
the requirements mentioned in this document are 
validated. User might ask for illegal, impractical 
solution or experts may interpret the 
requirements by mistake.  

 Requirements can be checked against following 
conditions -  
◦ If they can be practically implemented  
◦ If they are valid and as per functionality and domain of 

software  
◦ If there are any doubts  
◦ If they are complete  
◦ If they can be demonstrated  

 



 Analysis model operates as a link between 
the 'system description' and the 'design 
model'. 

 In the analysis model, information, functions 
and the behaviour of the system is defined 
and these are translated into the architecture, 
interface and component level design in the 
'design modeling'. 

 



 1. Scenario based element 

 2. Class based elements 

 3. Behavioral elements 

 4. Flow oriented elements 





 This type of element represents the system 
user point of view. 

 Scenario based elements are use case 
diagram, user stories. 

 





 The object of this type of element 
manipulated by the system. 

 It defines the object , attributes and 
relationship. 

 The collaboration is occurring between the 
classes. 

 Class based elements are the class diagram, 
collaboration diagram. 

 





 Behavioral elements represent state of the 
system and how it is changed by the external 
events. 

 The behavioral elements are sequenced 
diagram, state diagram. 

 





 An information flows through a computer-
based system it gets transformed. 

 It shows how the data objects are 
transformed while they flow between the 
various system functions. 

 The flow elements are data flow diagram, 
control flow diagram. 
 







 The rules of thumb that must be followed while 
creating the analysis model.  
 
The rules are as follows: 

 The model focuses on the requirements in the 
business domain. The level of abstraction must 
be high i.e there is no need to give details. 

 Every element in the model helps in 
understanding the software requirement and 
focus on the information, function and behaviour 
of the system. 

 The consideration of infrastructure and 
nonfunctional model  delayed in the design. 
 



 For example, the database is required for a 
system, but the classes, functions and 
behavior of the database are not initially 
required. If these are initially considered then 
there is a delay in the designing. 

 Throughout the system minimum coupling is 
required. The interconnections between the 
modules is known as 'coupling'. 

 The analysis model gives value to all the 
people related to model. 

 The model should be simple as possible. 
Because simple model always helps in easy 
understanding of the requirement. 
 



 Analysis modeling starts with the data 
modeling. 

 The software engineer defines all the data 
object that proceeds within the system and 
the relationship between data objects are 
identified.‟ 

 It Contains following:  
◦ Data Objects 

◦ Data attributes 

◦ Relationship 

 

 



 The data object is the representation of 
composite information. 

 The composite information means an object 
has a number of different properties or 
attribute. 
For example, Height is a single value so it is 
not a valid data object, but dimensions 
contain the height, the width and depth these 
are defined as an object. 

 



56 

Object —something that is described by a set 

 of attributes (data items) and that will be  
manipulated within the software (system) 

each  instance of an object (e.g., a book)  

 can be identified uniquely (e.g., ISBN #)  
 

 each plays a necessary role in the system 
i.e., the system could not function without  
access to instances of the object 

 

 

 

each is described by attributes that are  
themselves data items 



 Each of the data object has a set of attributes. 

object: automobile 

attributes: 
   make 
   model 
   body type 
   price 
   options code 

object: mobile  

attributes: 
  Camera 
   features 
   applications 
   price 
   other things 



 characteristics:Name an instance of the data 
object. 

 Describe the instance. 

 Make reference to another instance in 
another table. 

 



 Relationship shows the relationship between 
data objects and how they are related to each 
other. 

 Relationship is expressed as : 
One to one (1:1) 

One to many (1:M) 

Many to many (M: M) 

Modality (0) 

 



 One to one (1:1) 
One event of an object is related to one event of another 
object. 
For example, one employee has only one ID. 
 

 One to many (1:M) 
One event of an object is related to many events. 
For example, One collage has many departments. 
 

 Many to many(M:M) 
Many events of one object are related to many events of 
another object. 
For example, many customer place order for many 
products. 

 Modality 
 If an event relationship is an optional then the modality of 

relationship is zero. 
 If an event of relationship is compulsory then modality of 

relationship is one. 
 



 Functional Modelling gives the process 
perspective of the object-oriented analysis 
model and an overview of what the system is 
supposed to do. 

 It defines the function of the internal 
processes in the system with the aid of Data 
Flow Diagrams (DFDs). 



 The functional model addresses two processing 
elements of the WebApp, each 

 representing a different level of procedural 
abstraction: (1) user-observable functionality 

 that is delivered by the WebApp to end users, 
and (2) the operations contained within analysis 
classes that implement behaviors associated 
with the class. 



 Functional Modelling is represented through 
a hierarchy of DFDs.  

 The DFD is a graphical representation of a 
system that shows the inputs to the system, 
the processing upon the inputs, the outputs 
of the system as well as the internal data 
stores. 

  DFDs illustrate the series of transformations 
or computations performed on the objects or 
the system, and the external controls and 
objects that affect the transformation. 



 Processes - Processes are the computational 
activities that transform data values. A whole 
system can be visualized as a high-level process. 
A process may be further divided into smaller 
components. The lowest-level process may be a 
simple function. 

 Representation in DFD − A process is 
represented as an ellipse with its name written 
inside it and contains a fixed number of input 
and output data values. 

 Example − The following figure shows a process 
Compute_HCF_LCM that accepts two integers as 
inputs and outputs their HCF (highest common 
factor) and LCM (least common multiple). 
 



 Data Flows - Data flow represents the flow of data 
between two processes. It could be between an 
actor and a process, or between a data store and a 
process. A data flow denotes the value of a data 
item at some point of the computation. This value 
is not changed by the data flow. 

 Actors - Actors are the active objects that interact 
with the system by either producing data and 
inputting them to the system, or consuming data 
produced by the system. In other words, actors 
serve as the sources and the sinks of data. 

 

 





 Data Stores - Data stores are the passive objects 
that act as a repository of data. Unlike actors, 
they cannot perform any operations. They are 
used to store data and retrieve the stored data. 
They represent a data structure, a disk file, or a 
table in a database. 

 





 Example − Let us consider a software system, 
Wholesaler Software, that automates the 
transactions of a wholesale shop. The shop sells 
in bulks and has a clientele comprising of 
merchants and retail shop owners. Each customer 
is asked to register with his/her particulars and 
is given a unique customer code, C_Code. Once a 
sale is done, the shop registers its details and 
sends the goods for dispatch. Each year, the 
shop distributes Christmas gifts to its customers, 
which comprise of a silver coin or a gold coin 
depending upon the total sales and the decision 
of the proprietor. 





 The behavioral model  indicates how software 
will respond to external events. To create the 
model, you should perform the following steps: 

 1. Evaluate all use cases to fully understand the 
sequence of interaction within the system. 

 2. Identify events that drive the interaction 
sequence and understand how these events 
relate to specific objects. 

 3. Create a sequence for each use case. 

 4. Build a state diagram for the system. 

 5. Review the behavioral model to verify accuracy 
and consistency. 



 (Design) Sequence Diagrams 

 Communication Diagrams or collaboration 
diagram 

 State Diagrams or state machine 
diagram or state chart 

 

 

 



 In the context of behavioral modeling, two 
different characterizations of states must 

 be considered: (1) the state of each class as 
the system performs its function and 

 (2) the state of the system as observed from 
the outside as the system performs its 
function 



 The state of a class takes on both passive and 
active characteristics . 

 A passive state is simply the current status of all 
of an object‟s attributes.(eg : a Player is Playing 
Video Game . would include the current position 
and orientation attributes of Player as well as 
other features of that are relevant to the game). 

 The active state of an object indicates the current 
status of the object as it undergoes a continuing 
transformation or processing.(eg :- Player might 
have the following active states: moving, at rest, 
injured, being smoked;trapped, lost, and so 
onwards. An event (sometimes called a trigger) 
must occur to force an object to make a 
transition from one active state to another. 








