

SOFTWARE

ENGINEERING

(SE)

PREPARED BY

PROF.JIGAR DAVE
SOE
R.K.UNIVERSITY
8469766496

CHAPTER -1

INTRODUCTION TO SE

SOFTWARE

INTRODUCTION:

Software has become the key element in the evolution of

computer-based systems and products.

 Software is composed of programs, data, and

documents. Each of these items comprises a configuration

that is created as part of the software engineering process.

The intent of software engineering is to provide a

framework for building software with higher quality.

SOFTWARE

What is Software ?

Software is: (1) instructions (computer programs) that

when executed provide desired features, function, and

performance; (2) data structures that enable the

programs to effectively manipulate information, and

(3) descriptive information in both hard copy and

virtual forms that describes the operation and use of the

programs.

IEEE defines software as the collection of computer

programs, procedures, rules, and associated

documentation and data.

SOFTWARE

Software Characteristics :

1. Software is developed or engineered, it is not
manufactured in the classical sense.

2. Software doesn‘t ―wear out‖. (but it does
deteriorate. (get worse))

3. Although the industry is moving toward
component-based assembly, most software
continues to be custom built.

SOFTWARE

Software Applications:

Software may be applied in any situation for which a
prespecified set of procedural steps has been defined.

Following are the areas which uses software applications:

 System Software

 Real time Software

 Business Software

 Engineering /Scientific Software

 Embedded Software

 Personal Computer Software

 Web Based Software

 Al software

SOFTWARE

1. System software

 System software is a collection of programs

 written to service other programs. e.g.

 compilers, editors etc.

2. Real time software

 Software that monitors/analyzes/controls real-

 world events as they occur is called real time.

 Elements of real-time software include a data

 gathering information from an external

 environment structures.

SOFTWARE

3. Business software

 Business information processing is the largest single

 software application area.

 Discrete systems like as payroll, accounts receivable/

 payable, inventory

4. Engineering and Scientific software

 Engineering and scientific software have been

 characterized by number crunching algorithms.

 Applications range from astronomy to volcanology,

 from automotive stress analysis to space shuttle orbital

 dynamics, and from molecular biology to automated

 manufacturing.

SOFTWARE

5. Embedded software

 Intelligent products have become commonplace in
 nearly every consumer and industrial market.

 Embedded software resides in read-only memory and is

 used to control products and systems for the consumer
 and industrial mark etc.

6. Personal Computer Software

 The personal computer software market has thesaurus
 over the past two decades.

 Word processing, spreadsheets, computer graphics,
 multimedia, entertainment, database management,
 personal and business financial applications, external
 network, and database access are only a few of
 hundreds of applications.

SOFTWARE

7. Web Based Software

 The Web pages retrieved by a browser are software that

 incorporates executable instructions (e.g. CGI, HTML or

 Java), and data (e.g. hypertext and a variety of visual and

 audio formats).

8. Artificial intelligence software

 Artificial intelligence (Al) software makes use of non-

 numerical algorithms to solve complex problems that

 are not amenable (responsible) to computation or

 straightforward analysis.

 Expert systems, also called knowledge- based systems,

 pattern recognition (image and voice), artificial neural

 networks, theorem proving, and game playing are

 representative of applications within this category.

SOFTWARE

Software Myths:

1. Software is easy to change

2. Computers provide greater reliability than the

devices they replace

3. Testing software or ―providing‖ software correct

can remove all the errors.

SOFTWARE ENGINEERING

 ―Software Engineering is defined as the systematic

approach to the development, operation,

maintenance, and retirement of software‖.

 Systematic approach means that methodologies are

used for developing software which are repeatable. If they

are applied by different groups of people, similar software

will be produced.

SOFTWARE ENGINEERING

The IEEE definition:

 Software Engineering: (1) The application of a

systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software;

that is, the application of engineering to software. (2)

The study of approaches as in .

SOFTWARE ENGINEERING

Software Engineering : A Layered Technology

 To solve actual problems in an industry setting, a

 software engineer or a team of engineers must

 incorporate a development strategy that encompasses

 the process, methods, and tools layers.

 This strategy is often referred to as a process model

 or a software engineering paradigm.

 A process model for software engineering is chosen

 based on the nature of the project and application,

 the methods and tools to be used, and the controls and

 deliverables that are required.

SOFTWARE ENGINEERING

Software engineering is a layered technology as

you can see in figure:

SOFTWARE ENGINEERING

Software Engineering is a layered technology whose

bedrock(base) is a focus on quality.

The foundation for software engineering is the process

layer. Process defines a framework for a set of key

process areas (KPAs) that must be established for

effective delivery of software engineering technology.

Software engineering methods provide the technical

how-to use for building software including requirements

analysis, design, program construction, testing, and

support

Software engineering tools provide automated or semi-

automated support for the process and the methods.

When tools are integrated so that information created

by one tool can be used by another.

SOFTWARE ENGINEERING

SOFTWARE PROCESS

Introduction

A process is a collection of activities, actions, and

tasks that are performed when some work product is

to be created.

 An activity strives to achieve a broad objective

 An action (e.g., architectural design) encompasses a

set of tasks that produce a major work product.

 A task focuses on a small, but well-defined objective

(e.g., conducting a unit test) that produces a real

outcome.

SOFTWARE PROCESS

 ―Software process as a framework for the

tasks that are required to build high-quality

software.‖

 The phases and related steps described in our

generic view of software engineering are

complemented by a number of umbrella

activities.

 In addition, the process framework encompasses

a set of umbrella activities that are applicable

across the entire software process.

SOFTWARE PROCESS

A generic process framework for software

engineering encompasses five activities:

1. Communication(project initiation, requirements

gathering)

2. Planning (estimating, scheduling, tracking)

3. Modeling (analysis, design)

4. Construction (code, testing)

5. Deployment (delivery, support, feedback)

SOFTWARE PROCESS

1. Communication

 Before any technical work can begin, it is critically

important to communicate and collaborate with

customer.

2. Planning

 Any complicated journey can be simplified if map

 exist. Here software project is complicated journey

 and planning activity create map that helps guide

 the team as makes the journey.

SOFTWARE PROCESS

3. Modeling

 It does the same things by creating models to better

understand software requirements and the

design that will achieve those requirement.

4. Construction

 this activity combine the code generation and

testing that is required to uncover errors in code.

5. Deployment

 these software is delivered to the customer who

evaluates the delivered product and provide

feedback based on the evaluation.

PRESCRIPTIVE PROCESS MODEL

 Prescriptive process models define a given set of

process elements and a predictable process work

flow.

 Called ―prescriptive‖ because they prescribe a set

of process elements—framework activities,

software engineering actions, tasks, work products,

quality assurance, and change control mechanisms

for each project.

PRESCRIPTIVE PROCESS MODEL

1. Water Fall Model :

 Sometimes called the classic life cycle or the waterfall

model, the linear sequential model suggests a systematic

sequential approach to software development that

begins with customer specification of requirements

and progresses through planning, modeling, construction,

and deployment, culminating(excellence) in ongoing

support of the completed software.

PRESCRIPTIVE PROCESS MODEL

There are times when the requirements for a problem

are well understood—when work flows from

communication through deployment in a reasonably

linear fashion.

 It may also occur in a limited number of new

development efforts, but only when requirements are

well defined and reasonably stable.

PRESCRIPTIVE PROCESS MODEL

PRESCRIPTIVE PROCESS MODEL

When water fall model use?

What is Specialty of waterfall model?

Strength

1. The phase are clearly separated from each other.

2. This allow simple planning and control.

3. An exacta estimation of the required efforts and costs is
possible

Problem

Specification is frozen early because:

1. It is costly and time consuming.

2. Less possibility to get success

PRESCRIPTIVE PROCESS MODEL

 A variation in the representation of the waterfall model is
called the Vmodel , depicts the relationship of quality
assurance actions to the actions associated with
communication, modeling, and early construction activities.

 As a software team moves down the left side of the V,
basic problem requirements are refined into progressively
more detailed and technical representations of the problem
and its solution.

 Once code has been generated, the team moves up the right
side of the V, essentially performing a series of tests that
validate each of the models created as the team moved down
the left side.

 In reality, there is no fundamental difference between the
classic life cycle and the Vmodel.

PRESCRIPTIVE PROCESS MODEL

PRESCRIPTIVE PROCESS MODEL

 2. Incremental Process Model :

 The incremental model delivers a series of releases,

called increments, that provide progressively more

functionality for the customer as each increment is

delivered.

 There are many situations in which initial software

requirements are reasonably well defined, but the

overall scope of the development effort

precludes(prohibits) a purely linear process.

PRESCRIPTIVE PROCESS MODEL

 In addition, there may be a compelling need to provide

a limited set of software functionality to users quickly

and then refine and expand on that functionality in

later software releases.

 In such cases, you can choose a process model that is

designed to produce the software in increments.

PRESCRIPTIVE PROCESS MODEL

PRESCRIPTIVE PROCESS MODEL

 When an incremental model is used, the first increment is
often a core product. That is, basic requirements are
addressed but many supplementary features (some known,
others unknown) remain undelivered.

 The core product is used by the customer (or undergoes
detailed evaluation). As a result of use and/or evaluation, a
plan is developed for the next increment.

 The plan addresses the modification of the core product to
better meet the needs of the customer and the delivery of
additional features and functionality.

 This process is repeated following the delivery of each
increment, until the complete product is produced.

PRESCRIPTIVE PROCESS MODEL

 Advantages

 Possibility to use software immediately

 Highest priority requirements tends to receive most testing

 Early increment act as prototype to help draw requirements for

later increment.

 Drawback

• Hard to decide on size of each increments

• Progress can be hard to judge and problems hard to find because

there is no documentation to demonstrate what has been done.

PRESCRIPTIVE PROCESS MODEL

3. Evolutionary Process Models

 Nowadays modern computer software is characterized by

continual change, by very tight time lines, and by an

emphatic need for customer–user satisfaction.

 In many cases, time-to-market is the most important

management requirement. If a market window is missed, the

software project itself may be meaningless.

 Indeed, a software process that focuses on flexibility,

extensibility, and speed of development over high quality

does sound scary. And yet, this idea has been proposed by a

number of well-respected software engineering experts.

PRESCRIPTIVE PROCESS MODEL

 The intent of evolutionary models is to develop high-

quality software in an iterative or incremental manner.

However, it is possible to use an evolutionary process to

emphasize flexibility, extensibility, and speed of

development.

 Evolutionary models are iterative. They are

characterized in a manner that enables you to develop

increasingly more complete versions of the software.

PRESCRIPTIVE PROCESS MODEL

 Two common evolutionary process models are:

 1. Prototyping

 2. The Spiral Model

PRESCRIPTIVE PROCESS MODEL

Prototype Model : (what is circumstances)

 It is not software.

 Developer build a prototype during the

requirements phase.

 Prototype evaluated by end user.

 Users give corrective feedback.

 Developers further refine the prototype.

 When the user satisfied, the prototype code is

brought up to the standards needed for a final

product.

PRESCRIPTIVE PROCESS MODEL

Steps

• A preliminary project plan is developed

• An partial high-level paper model is created

• The model is source for a partial requirement specification

• A prototype is built with basic and critical attributes

• The design builds

• The database

• User interface

• Algorithm function

• The designer demonstrates the prototype, the user

evaluates for problems and suggests improvements

• This loop continues until the user is satisfied

PRESCRIPTIVE PROCESS MODEL

PRESCRIPTIVE PROCESS MODEL

Strength

 Customer can see the system requirements as they

are being gathered

 Developer learn from customers

 A more accurate end product

 Unexpected requirements accommodated

 Allows for flexible design and development

 Steady, visible signs of progress produced

 Interaction with the prototype stimulates awareness

of additional needed functionality.

PRESCRIPTIVE PROCESS MODEL

 Weaknesses

 Tendency to abandon structured program development

for ―code and fix‖ development

 Bad reputation for ―quick and dirty‖ method

 Overall maintainability may be overlooked

 When we use

 Requirements are unstable

 Requirements classification stage

 Develop user interfaces

 Short-lived demonstrations

 New , original development

PRESCRIPTIVE PROCESS MODEL

The Spiral Model

 This model was first described by Barry Boehm in his
1986 paper "A Spiral Model of Software Development
and Enhancement―

 Spiral model is more an emphasis placed on risk
analysis.

 Each phase in spiral model begins with a design goal
and ends with the client reviewing the progress.

 Each phase in this model is split into four phases:
Planning, Risk analysis, Engineering, evaluation

https://en.wikipedia.org/wiki/Barry_Boehm

PRESCRIPTIVE PROCESS MODEL

PRESCRIPTIVE PROCESS MODEL

Phase -1 (Planning)

o Objective: functionality, performance, unit requirement,

critical success factors etc,

o Alternative: build, reuse, buy, sub-contract

o Constraint : cost, schedule, interface.

o Requirements are gathered during the planning phase.

o Requirements like ‗BRS‘ that is Business Requirement

Specifications and ‗SRS‘ that System Requirement

Specifications

PRESCRIPTIVE PROCESS MODEL

 Phase-2 (Risk analysis)

a) Identify risk: lack of experience, new technology,

tight schedules, poor process

b) Resolve risk : Evaluate if money could be lost by

continuing system development)

 In the risk analysis phase, a process is

undertaken to identify risk and alternate

solutions. A prototype is produced at the end of the

risk analysis phase. If any risk is found during the

risk analysis then alternate solutions are suggested

and implemented.

PRESCRIPTIVE PROCESS MODEL

 Phase-3 (Engineering)

 In this phase software is developed, along with

testing at the end of the phase. Hence in this phase

the development and testing is done.

 Phase-4 (evaluation)

 This phase allows the customer to evaluate the

output of the project to date before the project

continues to the next spiral.

PRESCRIPTIVE PROCESS MODEL

http://istqbexamcertification.com/what-is-a-software-testing/

When to use Spiral-SDLC Model?

 When project is large.

 Where the software needs continuous risk evaluation.

 When releases are required to be frequent.

 When risk and costs evaluation is important.

 For medium to high-risk projects.

 When requirements are unclear and complex.

 When changes may require at any time.

 Long-term project commitment unwise because of
potential changes to economic priorities

 Users are unsure of their needs

 Requirements are complex

PRESCRIPTIVE PROCESS MODEL

PRESCRIPTIVE PROCESS MODEL

Strength

 High amount of risk analysis hence, avoidance of Risk is

enhanced.

 Good for large and mission-critical projects.

 Strong approval and documentation control.

 Additional Functionality can be added at a later date.

 Software is produced early in the software life cycle.

http://istqbexamcertification.com/what-are-the-software-development-life-cycle-phases/

PRESCRIPTIVE PROCESS MODEL

 Weakness

 Time spent for small and low-risk project

 The model is complex

 Risk assessment expertise is required

 Spiral may be continue indefinitely

 Can be a costly model to use.

 Project‘s success is highly dependent on the
risk analysis phase.

 Doesn‘t work well for smaller projects.

WATERFALL MODEL V/S SPIRAL MODEL
Waterfall Model Spiral Model

1] Waterfall model is suitable for

small projects.

1] Spiral model is not suitable for

small projects.

2] High amount of risk and

uncertainty.

2] Better risk management.

3] Easy to understand. 3] Process is complex.

4] Stages are clearly defined. 4] The process may go indefinitely.

5] This model is not suitable for

long and ongoing projects.

5] This model is suitable for long

and ongoing projects.

6] Sequence is followed 6] Iterations are followed

7] Requirements once fixed cannot

be modified

7] Flexible with user requirements

8] Refinements are not so easy 8] Refinements are easily possible

Water Fall Model Spiral Model

9] Phases are processed and

completed one at a time.

9] Phases are repeated itself

10] In the software development

life cycle, business requirements

are frozen after the initial phase.

10] In the spiral model,

requirements are not frozen by the

end of the initial phase. It is kind

of executed in a continuous mode.

COMPARISON OF VARIOUS SDLC MODELS

 Properties of

Model

Water-Fall

Model

Incremental

Model

Spiral Model

Planning in

early stage

Y Y Y

Returning to

an earlier

phase

N Y Y

Handle Large-

Project

N N Y

Detailed

Documentatio

n

Compulsory Yes but not

much

Y

Cost Low Low expensive

Requirement

Specifications

Beginning Beginning Beginning

Flexibility to

change

Difficult Easy easy

User

Involvement

Only at

beginning

Intermediate High

Properties of

Model

Water-Fall

Model

Incremental

Model

Spiral Model

Duration Long Very long Long

Risk

Involvement

High Low Medium to high

risk

Framework

Type

Linear Linear +

Iterative

Linear +

Iterative

Testing

(Developer

Side)

After completion

of coding phase

After every

iteration

At the end of the

engineering

phase

Re-usability Least possible To some extent To some extent

Time-Frame Very Long Long Long

Working

software

availability

At the end of the

life-cycle

At the end of

every iteration

At the end of

every iteration

Team size Large Team Not Large Team Large Team

Customer

control over

administrator

Very Low Yes Yes

RAD MODEL.

 The RAD (Rapid Application Development) model

is based on prototyping and iterative development with

no specific planning involved.

 The process of writing the software itself involves the

planning required for developing the product. The

process of writing the software itself involves the

planning required for developing the product.

 RAD focuses on gathering customer requirements

through workshops or focus groups, early testing of the

prototypes by the customer using iterative concept,

reuse of the existing prototypes (components),

continuous integration and rapid delivery.

WHAT IS RAD?

 Rapid application development is a software

development methodology that uses least

planning in service of fast prototyping.

 RAD projects follow iterative and incremental

model and have small teams comprising of

developers, domain experts, customer

representatives and other IT resources working

progressively on their component or prototype.

RAD MODEL DESIGN

 Following are the various phases of the RAD Model −

 Business Modeling

 flow of information and the distribution of information

between various business channels. A complete business analysis

is performed to find the dynamic information for business.

 In short req. gathering

 Data Modeling

 Data object

 Data attribute

 Relationship

 Process Modeling

 Process on data modeling & business modeling

 In short Analysis & Designing

 Application Generation

 The actual system is built and coding Done by by using

automation tools to convert process and data models into

actual prototypes.

 Testing and Turnover

 Testing and Depolyment

ASSIGNMENT QUESTIONS
1. What is software? Define characteristics of

software.

2. List out and explain Applications of Software.

3. What is software Engineering?

4. Write the importance of software engineering

5. Describe: software engineering as layered
technology.

6. What is software process? Define a generic
process framework activity of Software
Engineering.

7. Explain all process models in brief.

8. Compare all incremental , spiral , waterfall
models.

9. Differentiate : Waterfall v/s Spiral Model .

10. Justify : Software Can‘t be wear out.

11. Comment on software is custom built.

12. Explain SDLC in Depth.

